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Abstract. The relation between the quantum defects, µλ, and scattering phases, δλ, in the single-channel
Quantum Defect Theory (QDT) is discussed with an emphasis on their analyticity properties for both
integer and noninteger values of the orbital angular momentum parameter λ. To derive an accurate relation
between µλ and δλ for asymptotically-Coulomb potentials, the QDT is formally developed for the Whittaker
equation in its general form “perturbed” by an additional short-range potential. The derived relations
demonstrate that µλ is a complex function for above-threshold energies, which is analogous to the fact that
δλ is complex for below-threshold energies. The QDT Green’s function, Gλ, of the “perturbed” Whittaker
equation is parameterized by the functions δλ and µλ for the continuous and discrete spectrum domains
respectively, and a number of representations for Gλ are presented for the general case of noninteger λ.
Our derivations and analyses provide a more general justification of known results for nonrelativistic and
relativistic cases involving Coulomb potentials and for a Coulomb plus point dipole potential.

PACS. 31.15.-p Calculations and mathematical techniques in atomic and molecular physics (excluding
electron correlation calculations) – 33.80.Rv Multiphoton ionization and excitation to highly excited states
(e.g., Rydberg states)

1 Introduction

The quantum defect theory (QDT) is one of the most ef-
fective semiempirical methods in atomic and molecular
physics. Based on the information known from the spec-
tra εn of one-electron excitations, this approach yields
good estimates for the non-Coulomb part of scattering
phases δl(ε) (where l is the orbital angular momentum
quantum number), for the bound-bound and bound-free
matrix elements (e.g., the oscillator strengths and the
photoionization cross-sections), and for more complicated
single-channel atomic parameters such as polarizabilities,
hyperpolarizabilities and cross-sections of other multipho-
ton processes determined by higher orders of perturbation
theory. At present, the multichannel modifications of QDT
are effective tools for the analysis of complex spectra and
collision processes, especially in molecular applications.
Because the QDT has a long history, we discuss briefly in
this introductory section that aspect of this history which
is the focus of the present paper: the relationship between
quantum defects and phase shifts (referred to hencefor-
ward as the δ–µ relation) and especially the fact, which is
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discussed here for the first time, that the quantum defect
is a complex-valued function for above-threshold energies.
With this context established, we then outline the results
of the present paper.

1.1 Brief review of QDT formulas relating
the quantum defect to the phase shift

After the first application of the Coulomb-like approxi-
mation to the systematic analysis of oscillator strengths
in nonhydrogenic atoms [1], the next principal steps in this
area were made by Seaton [2,3] and Ham [4], who consid-
ered the quantum defect as a function of energy, µl(ε),
whose values at ε = εn are determined by the difference
between the experimental one-electron energies, εn, and
the pure Coulomb ones, i.e.,

µl(εn) = n− Zν(εn), (1)

where Z is the residual ion charge, and where n and
ν(ε) = 1/

√
−2ε are the principal and “effective” prin-

cipal quantum numbers for a series of levels with orbital
angular momentum l. These authors analyzed some of the
general properties of µl(ε) and so they went beyond the
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Coulomb-like approximation to create the QDT. Seaton’s
famous relation [2],

cot δl = cotπµl, (2)

between µ(ε) and δ(ε) in the near-threshold region of the
continuum put in place the basis for wide applications of
QDT to the analysis of photoionization cross-sections and
scattering phases (see, e.g., [5,6]). Somewhat later, Seaton
proposed an extended form of this relation [3]

cot δl = (1− exp(−2πZ/k)) cotπµl, (3)

which was intended to be applicable in a wider interval
of ε > 0. Here k =

√
2ε. Seaton was interested mainly in

determining δl(ε) in terms of µl(ε) extrapolated into the
continuum from the bound state region ε < 0, so that both
cot δl and cotπµl in (3) are considered as real functions
for ε > 0. The equation (3) was later rederived in [8] using
effective range theory for near-threshold energies.

A more accurate form of δ–µ relation for transition
from positive to negative energies ε was derived for the
first time by Norman [9], who pointed to inaccuracies in
Seaton’s derivation of relation (3). Norman also used effec-
tive range theory, but treated the fundamental relations
of this theory for positive and negative energies more pre-
cisely than in [8]. We present Norman’s relation [9] here
in a form analogous to (3),

cot δl(ε > 0) −→
(1− exp(i2πZν)) cotπµl(ε < 0)− i exp(i2πZν), (4)

where the arrow indicates the analytic continuation of
cot δl to energies ε ≡ −1/2ν2 < 0. Considering the
relation (4) as an equality with ν = i/k on the right-hand
side, we see that the resulting equation differs from (3)
by the last term on the right-hand side of (4); this term
is purely imaginary for positive ε (or equivalently for
ν = i/k). Thus, considering (4) as an equality with ε > 0
on both sides and writing its real part only, we obtain the
following more precise form of equation (3)

cot δl(ε > 0) = (1− exp(−2πZ/k)) Re[cotπµl(ε > 0)].

Thus Norman’s result, although not remarked upon ex-
plicitly in [9], shows that the accurate analytical δ−µ re-
lation requires that δ and µ be considered as complex for
negative and positive energies, respectively. Seaton had
earlier observed that µ(ε) becomes complex for positive
energies if results of Ham [4] are employed (see the first
footnote on p. 509 of [3]), but he did not pursue the mat-
ter. The corresponding complexity of δl(ε) for ε < 0 is not
surprising, as it follows from the well-known relation of
scattering theory that for the discrete spectrum energies
one has

cot δl(ε)→ i for ε→ εn, (5)

which determines the S-matrix poles corresponding to the
bound states. (Alternatively, (5) follows from the asymp-
totic boundary condition on discrete state wave func-
tions [10].) Using the definition (1) for the quantum de-
fect, the relation (4) for ε = εn reduces immediately to (5),

unlike the relation (3). Note, that for the Coulomb plus
short-range potential the substitution (5) for the transi-
tion from continuum to bound state energies was used first
by Landau and Smorodinskii [10].

The relation (4) is important and necessary for cor-
rect analytic manipulations involving the functions µ(ε)
and δ(ε). It permitted the derivation of the QDT Green’s
function for an optical (valence) atomic electron for the
case of integer values of l [11]. This Green’s function is
convenient for calculating radial dipole matrix elements
in high orders of perturbation theory, e.g., for multipho-
ton calculations. Using an interpolation procedure for the
determination of (real) µl(ε) at energies below threshold in
the intervals εn < ε < εn+1, such an approach enables cal-
culations of the multiphoton cross-sections for the simplest
atoms with the same precision as the Bates-Damgaard cal-
culations [1] of oscillator strengths (see, e.g., [12,13]). An
important advantage of the QDT approach as compared
to more ab initio theoretical methods is that the resonance
structure of the cross-sections coincides with the experi-
mental resonances owing to the use of the experimental
data for εn. Note that the QDT Green’s function is also
useful in collision problems [14].

A treatment of the QDT in a more general form than
previously performed was given in [15,16]. In addition to
the nonrelativistic Coulomb problem, these authors con-
sidered the cases of a free electron and of an electron in a
long-range dipole potential. However, these authors were
interested mainly in the extraction of a set of convenient
parameters (“the QDT parameters”) describing the core
effects on bound and continuum state wavefunctions with-
out analyzing the δ–µ relation. Moreover they “... dropped
Seaton’s distinction between δ and πµ for ε > 0” (see
p. 1498 of [15]). The most detailed results on the general
form of QDT were derived in [16] based on a special pre-
scription for the definition of the Jost functions for the
case of singular potentials. That work deals with six QDT
parameters as real functions of energy and angular mo-
mentum. Later, some relationships between these param-
eters were given in [17]. Furthermore, in order to extend
the Jost function formalism to the case of singular poten-
tials, reference [16] employed different representations for
the QDT basis functions above and below threshold ob-
tained using a non-standard asymptotic form of the con-
fluent hypergeometric function (in Appendix C we present
further details on this matter and on the relation to the
present work).

Concerning the QDT Green’s function, this was con-
structed in [15] based on the regular and irregular solu-
tions of the Schrödinger equation. But it seems that the
authors did not intend to employ these Green’s functions
for the calculation of high-order matrix elements or for
the cross-sections of multiphoton processes and so they
worked only with so-called regular (or “smooth”) Green’s
functions (introduced by Fano [18]), which do not contain
any poles and are useful in multichannel applications, es-
pecially to Rydberg atoms and molecules. (For details of
such applications see, e.g., [19–22].) Moreover, the bound
and continuum eigenfunctions were obtained without
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using the Green’s functions, through a direct analysis
of the radial Schrödinger equation solutions for bound
and continuum states; hence all results of [15,16] are in-
dependent of the explicit δ–µ relation. Furthermore, for
those problems considered in [15] that involve the radial
Schrödinger equation with a noninteger orbital parameter
l, a relationship between µ and δ has yet to be derived,
since the Norman relation (4) is valid for integer l only.

The relativistic generalization of QDT for a single elec-
tron described by the Dirac equation was addressed in
[23,24]. Zilitis [23] confirmed that the relation (2) applies
in the relativistic case at threshold. He noted that Seaton
had derived a more general expression (3), but commented
that he was “inclined... [to] agree with Norman [9] that
this more general relationship is not correct.” Johnson
and Cheng [24], however, aimed to generalize Seaton’s
more general equation (3) to the relativistic case, based on
[2–4]. In equation (34) of [24] an analytic function B is de-
fined which is real below threshold and complex above the
threshold. However, in analytically continuing a function
β(ε) (see Eq. (37) of [24]) above threshold, only the real
part of B is kept, which is evidently non-analytic. Conse-
quently, Johnson and Cheng [24] obtained the following
δ–µ relation:

cot δλ(ε̄) =[
1− cos(2πλ)ei2πZν̄

]
cotπµλ(ε̄)− sin(2πλ)ei2πZν̄ . (6)

Here ε̄ is equal to the total energy of the relativistic elec-
tron, E, in units of its rest mass,mc2, λ is a relativistic pa-
rameter (defined explicitly in Appendix B below) which in
the non-relativistic limit becomes the orbital angular mo-
mentum l of the electron, and ν̄ is an energy-dependent
parameter defined as

ν̄ ≡ αε̄/
√

1− ε̄ 2,

which in the non-relativistic limit takes the usual form for
the effective principal quantum number (cf. (1)), 1/

√
−2ε .

One readily sees that in the non-relativistic limit, equa-
tion (6) agrees with the more general equation (3) of
Seaton but not with the correct equation (4) of Norman.
In particular, (6) does not satisfy (5) at the discrete state
energies.

The relativistic case was revisited by Zilitis [25] and
by Goldberg and Pratt [26]. However, Zilitis simply notes
the results of Johnson and Cheng [24] without discussion,
while Goldberg and Pratt reproduce the results of [24].
QDT analysis for the Dirac equation was also given by
Chang [27], based on the ideas of the generalized QDT
[15,16], without mentioning the δ–µ relation. The correct
form of this relation in the relativistic case was stated
without discussion or detailed derivation in [28]. This rela-
tion corresponds to (6), and coincides with (4) in the non-
relativistic case and yields equation (5) for bound states.
It was used in [28] for the derivation of the one-electron
Green’s function in relativistic QDT by a method similar
to that employed in the nonrelativistic case (see Ref. [11]).
Using an analogous correct relationship between the quan-
tum defect and the phase shift, the QDT Green’s function

was presented recently for the case of Rydberg electron
states in polar molecules in reference [29], which refers to
the results presented in [28].

1.2 Outline of the present paper

As the above survey shows, although the δ–µ relation is
one of the fundamental results of QDT, it requires some
additional investigation. Many key references in the field
of QDT present a δ–µ relation which is not quite correct.
Furthermore, those references which present a correct an-
alytic relation have done so for only specific cases and
in a number of instances have merely stated the result
without derivation or discussion. Specifically, the correct
non-relativistic result (4), for example, was derived in [9]
based on methods of effective range theory for a repulsive
Coulomb potential with further examination of the attrac-
tive potential case. Furthermore, since the effective range
approach is justified only in the near-threshold energy re-
gion, an additional independent analysis of the relation (4)
is desirable. Secondly, an accurate generalization of that
result to the general case of noninteger orbital parameters
is needed (as is required, e.g., in the Coulomb plus dipole
field case). Finally, a detailed derivation of the correct re-
lation corresponding to (6) for the relativistic case has yet
to be presented, although the correct result was stated
in [28].

In Section 2 we analyze all of these problems for the
general form of the Whittaker equation perturbed by a
short-range potential with a radius rc. Using QDT ideas,
the treatment is based on knowledge of the known spec-
trum of the corresponding Sturm-Liouville problem for the
perturbed Whittaker equation on the interval 0 ≤ r <∞.
All the known δ–µ relations are special cases of our key
relations given in (32) below for the general case of non-
integer λ. For near-threshold energies ε > 0 and λ = l
these relations give an improved form (38) of Seaton’s for-
mula (3).

Based on the δ–µ relation given in Section 2, in
Section 3 we construct the Green’s function of the gen-
eral Whittaker equation for the r, r′ > rc domain. It con-
tains all the information needed for obtaining the correctly
normalized QDT wavefunctions for bound and continuum
states in a most economical way. As has been mentioned
above, such a general Green’s function is useful, in par-
ticular, for calculations of cross-sections for multiphoton
processes using the QDT approach [13]. The results pre-
sented are applicable to all physical problems for which the
radial Schrödinger equation reduces to the general form
of the Whittaker (or confluent hypergeometric) equation.
Finally, in appendices we present some further results.
In Appendix A the δ–µ relation is derived in terms of
an alternate set of QDT basis functions. In Appendix B
we specify the parameters of the general Whittaker equa-
tion for the three most important physical applications of
QDT: (i) a nonrelativistic or (ii) a relativistic electron in
a Coulomb potential, and (iii) an electron in the Coulomb
plus point dipole potential. Thus, our general development
provides an accurate and unified derivation and additional
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justification of some known QDT-results for these impor-
tant physical problems. Lastly, Appendix C provides a
more detailed discussion of the relation of this paper to
references [15–18].

Before proceeding with the program outlined above, we
make some observations on the approach we follow here,
namely, that of considering the quantum defect, µ(ε), and
the phase shift, δ(ε), as complex functions of ε. This ap-
proach may seem strange to some readers. We hasten to
add that in the regions where one expects these functions
to be real, i.e., µ for energies below threshold, and δ for
energies above threshold, they are. Our purpose here is
simply to present the correct analytic δ–µ relation for the
same reasons stated long ago by Morse and Feshbach [30]
for the study of complex functions, namely that extend-
ing the study of µ and δ to complex values is done “ . . .
for reasons of completeness and convenience [as well as
for] . . . the insight we shall obtain into the general proper-
ties of functions”. Pragmatic readers may also ask what is
the practical effect of considering µ(ε) and δ(ε) as complex
functions. Although the exact relation between δ and µ al-
lows us to present for ε > 0 and λ = l an improved form
of Seaton’s formula (3), we do not expect a great improve-
ment in extrapolation procedures for quantum defects or
phase shifts (cf. Tab. 1). Nevertheless, this small practical
importance for analysis of spectroscopic data should not
detract from the significance of the exact relation for theo-
retical analyses. Indeed, as shown in this paper, using the
proper relations in equation (32) for analytically continu-
ing µ(ε) and δ(ε) above or below threshold will have the
greatest application in theoretical analyses. As shown in
this paper, for example, it permits one to obtain an ana-
lytical representation for the appropriate Green’s function
(given in Eq. (43) below), which has a single form for en-
ergies both above and below threshold and is valid for
the case of integer as well noninteger values of the orbital
angular momentum parameter λ.

2 Relation of δ and µ in the QDT analysis
of the Whittaker equation

2.1 Background results for the Whittaker equation

We consider the Whittaker-like equation with an addi-
tional short-range potential u(z)

L̂u[f ] ≡
{ d2

dz2
− 1

4
+
Zν

z
+

1/4− (λ+ 1/2)2

z2

+ u(z)
}
f(z) = 0. (7)

Here λ is supposed to have a fixed (real) value and ν is
considered to be a complex parameter. Z > 0 is a con-
stant depending upon the particular physical application
(e.g., the nuclear charge). The real radial variable r is
related to z as follows: z = 2r/ν, where 0 ≤ r < ∞.
The short-range potential u(z) satisfies the following con-
ditions: u(z) ∼ O(r−1) for r → 0, and u(z) = 0 for
r ≥ rc. The explicit form of u is unknown, but we suppose

that adding this short-range potential does not change
the characteristic features of the corresponding “unper-
turbed” Sturm-Liouville problem, L̂0[f ] = 0. Namely, we
suppose that the continuous spectrum of (7) corresponds
to imaginary values of the spectral parameter ν,

ν = i/k, k > 0; (8)

and that the discrete spectrum corresponds to the follow-
ing eigenvalues of the parameter ν:

ν = νnλ, n = 0, 1, 2, . . . ;
νnλ → +∞ as n→∞. (9)

Note that in physical applications n is an analogue of
the radial quantum number nr. Moreover, for the pure
Coulomb potential (u = 0)

ν0
nλ =

1
Z

(n+ λ+ 1). (10)

Let us firstly present well-known results for the solutions
of (7) with u ≡ 0, i.e., the results for the Coulomb prob-
lem with noninteger l = λ which are necessary for our
further considerations. In this case, equation (7) becomes
the standard Whittaker equation, which has the following
widely-used pair of solutions (see, e.g., [31,32]),

MZν,λ+ 1
2
(z) and WZν,λ+ 1

2
(z), (11)

which are linearly independent for all λ. For the pur-
poses of this paper we introduce the following modified
Whittaker functions:

M+(z) =
MZν,λ+ 1

2
(z)

Γ (2λ+ 2)

= eiπZν
(
W−(z)− e−iπλW+(z)

)
, (12)

M−(z) =
MZν,−λ− 1

2
(z)

Γ (−2λ)
, (13)

W±(z) =
W±Zν,λ+ 1

2
(±z)

Γ (1 + λ± Zν)
, (14)

where we assume −z = eiπz and Im z ≤ 0.
Above the threshold, i.e., for ν = i/k, it is convenient

to use another base pair: fλ(k, r) and gλ(k, r). We define
them by

M+ ↔ 2e−iπ(1+λ)/2e−
πZ
2k∣∣Γ (1 + λ+ iZ

k )
∣∣ fλ(k, r),

W± ↔ e∓iπ(1+λ)/2e
πZ
2k∣∣Γ (1 + λ+ iZ
k )
∣∣(fλ(k, r) ± igλ(k, r)

)
, (15)

where ↔ means the substitution ν ↔ i/k. Using the
well-known asymptotic expansions for Whittaker func-
tions [31,32],

WZν,λ+ 1
2
(z) ∼ zZνe−z/2,

W−Zν,λ+ 1
2
(−z) ∼ (−z)−Zνez/2, (16)
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one can obtain the following asymptotic forms for fλ, gλ
at r →∞:

fλ(k, r) ∼ sin∆λ(r), gλ(k, r) ∼ cos∆λ(r), (17)

where ∆λ(r) = kr + (Z/k) ln 2kr− πλ/2 + σλ, and where
σλ = argΓ (1 + λ− iZ/k).

Rather than the (M+,W+) and W± bases, another
pair of linearly independent solutions is used in QDT. This
pair is denoted (to within a constant factor) as y1,2 in [7],
as y(κ,±λ, z) in [6], and as yR,I in [24]. In the present
paper these solutions are denoted as fλ(z) and f−λ−1(z).
Here we express them in terms of the (M+,W+),W± and
(fλ, gλ) base pairs as:

fλ = νλ+1M+,

f−λ−1 = ν−λM−

= −νλ+1A(ν, λ)
W+ sin 2πλ+M+ sinπ(λ + Zν)

sinπ(Zν − λ)
(18)

= νλ+1A(ν, λ)eiπZν

×
[
eiπλW+ − sinπ(Zν + λ)

sinπ(Zν − λ)
W−

]
(19)

↔ 2ikλ
e−iπλ−iσλe−

πZ
2k

Γ
(
−λ+ iZk

)
×

fλ

(
e−

2πZ
k − cos 2πλ

)
− gλ sin 2πλ

e−2πiλ− 2πZ
k − 1

· (20)

Following Seaton’s notation, we introduce here the factor

A(ν, λ) =
Γ (1 + λ+ Zν)
ν2λ+1Γ (Zν − λ)

·

Note that fλ and f−λ−1 are energy independent at small r:

fλ(z → 0)→ (2r)λ+1

Γ (2λ+ 2)
·

The difference between the basis pairs (11) and (fλ, f−λ−1)
is that, for non-integer 2λ, the latter basis functions are
analytic in ν about some neighborhood of infinity (or,
equivalently, the functions fλ and f−λ−1 are analytic in ν−1

near zero). For 2λ = 2l is integer, f−λ−1 can be defined in
the limit λ→ l, but the resulting function is non-analytic
in ν. The appropriate base pair in this case is analyzed
in [3,4]. We present its explicit form in Appendix A.

2.2 Real values of the ν parameter: the quantum
defect as a function of ν

Returning to equation (7), let us consider its regular so-
lution (at z → 0), f reg

λ (ν; z), which is an entire analytic
function in the ν-plane except for ν = 0. The existence
of such a solution is proved by the general theory of dif-
ferential equations and was discussed in [4]. This solution
is not known in the core domain (r < rc), but for r > rc

it is a superposition of the linearly independent, entire
functions fλ and f−λ−1. Note that it is assumed that 2λ is
non-integer; otherwise we would have to deal with another
analytic solution instead of f−λ−1. We have not analyzed
these solutions for integer 2λ here, because our final re-
sults (for the δ–µ relation and for the Green’s function)
will be applicable for integer 2λ as well.

For r > rc, we therefore write the required solution as

f reg
λ (ν; z) = fλ(z)− βλf−λ−1(z). (21)

It contains the unknown function βλ(ν), which must be an
entire analytic function for all ν 6= 0 since the functions fλ
and f−λ−1 are analytic. We analyze the function βλ using
arguments similar to those in [4,24]. The eigenfunction
corresponding to the discrete eigenvalues (9) must satisfy
the boundary condition,

f reg
λ (ν = νnλ; z → +∞)→ 0. (22)

From equations (12, 16, 19) it can be easily seen that the
solution (21) contains both exponentially decreasing and
exponentially increasing terms. Since the condition (22)
requires the latter to vanish at ν = νnλ, we can determine
the coefficient βλ for the discrete spectrum points:

β−1
λ (νnλ) = ν−2λ−1

nλ

Γ
(
1 + λ− Zνnλ

)
Γ
(
− λ− Zνnλ

)
= A(νnλ, λ)

sinπ
(
λ+ Zνnλ

)
sinπ

(
λ− Zνnλ

) , (23)

where we have used the well-known reflection formula [34]
for the Γ function to obtain the last term in (23).

We introduce now the quantum defect function µλ(ν)
defined by

µλ(νnλ) ≡ µnλ = Z(ν0
nλ − νnλ)

= n+ λ+ 1− Zνnλ (24)

for the discrete spectrum points given by equation (9).
Taking into account (24), we can remove Zνnλ from the
arguments of the sines in equation (23), so that:

β−1
λ (νnλ) = A(νnλ, λ)

(
cotπµnλ sin 2πλ− cos 2πλ

)
. (25)

Since βλ(ν) is analytic and µλ(ν) is defined on a subset νnλ
with an accumulation point (cf. Eq. (9)), we may consider
that equation (25) defines an analytic function βλ(ν) for
all ν 6= 0. In this case the analytic function βλ(ν) is pa-
rameterized with the help of another function, cotπµλ(ν).
The function βλ(ν) has no branch point at infinity since
A occurring in (25) has the following asymptotic value for
|ν| → ∞ (| arg ν| < π):

Z−2λ−1A(ν, λ) ∼ 1− λ(1 + λ)(1 + 2λ)
6(Zν)2

+O
(
ν−4

)
,

(26)

which follows from asymptotic expansions of Γ func-
tions [34]. Obviously the threshold value βλ(+∞) is con-
nected in a simple way with cotπµλ(+∞).
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Substituting (25) with νnλ = ν and µnλ = µλ(ν)
into (21) (and using some properties of the Whittaker
functions [31]), we re-write the latter in terms of µλ(ν)
and the (M+,W+) and W± base pairs:

f reg
λ (ν; z) =

νλ+1 sin 2πλ
sinπ(2λ− µλ)

× M
+(z) sinπ(µλ + Zν − λ) + sinπµλW+(z)

sinπ(Zν − λ)

=
νλ+1 sin 2πλ

sinπ(2λ− µλ)

[
eiπZνW−(z)

sinπ(µλ + Zν − λ)
sinπ(Zν − λ)

− eiπ(µλ+Zν−λ)W+(z)
]
. (27)

Note that the first of these identities explicitly involves
only real functions for real values of ν.

2.3 Imaginary values of the ν parameter:
the scattering phase as a function of ν

For the continuous spectrum (see (8)) another parame-
terization of the function βλ(ν = i/k) is preferable. It is a
well-known fact that the influence of the short-range core
potential results in an additional phase shift, δλ, of the
scattering phases in the continuum eigenfunctions, whose
asymptotic form becomes (cf. (17))

f reg
λ (ν = i/k; z → −i∞) ∝ sin(∆λ(r) + δλ(ν)). (28)

For this reason, it is convenient to express βλ(ν) in terms
of the phase δλ(ν). To perform such a parameteriza-
tion, one can use equations (12, 16, 19) to obtain the
asymptotic behaviour of the functions fλ and f−λ−1 for
z → −i∞. Substituting these asymptotics into equa-
tion (21) and comparing the result with (28) we obtain
βλ(ν) in terms of the phase δλ(ν):

β−1
λ (ν = i/k) = A(i/k, λ)

×
1− exp(− 2πZ

k − iπλ)
cot δλ(i/k) sin 2πλ− cos 2πλ+ exp(−2πZ/k)

· (29)

This relation requires some explanation. Indeed, (29) was
derived above for Re ν = 0, Im ν > 0. However, βλ(ν)
is analytic everywhere in the ν-plane except at the point
ν = 0; the right-hand side of (29) can be considered as
an analytical continuation of βλ(ν) for other ν in terms
of the function cot δλ(ν). But in spite of the analyticity of
βλ(ν), the right-hand side of equation (29) does not have
an explicitly analytic form at the threshold |ν| → ∞ since
it contains the exponents exp(2πiZν), which have an es-
sential singularity at infinity. So for the analyticity of β
at ν = ∞ these singularities should be compensated by
the essential singularities of cot δλ(ν) near the threshold.
It is known [35] that for noninteger λ and singular po-
tentials, the Sλ(k)-matrix has an essential singularity at
k = 0 instead of a branch point, as for the case of smooth
potentials. But no detailed analysis of this problem simi-
lar to the effective range theory approach for the Coulomb

potential and integer λ is known to us. Thus, perhaps (29)
may be considered as a starting point for such analysis.
Obviously, the threshold value of β(ν) is unique and we
can obtain it as the limiting case of (29) for ν → +i∞
along the positive imaginary semiaxis (taking into account
the expansion (26)):

β−1
λ (+∞) = Z2λ+1 (cot δλ(+i∞) sin 2πλ− cos 2πλ) .

(30)

Continuing (29) to below-threshold ν values, we can
consider it for the discrete spectrum points (9). Since the
scattering matrix Sλ(ν) has poles at these points, we put
cot δλ = i (cf. (5)) whereby (29) reduces immediately
to the last identity in (23) containing the ratio of sines.
Thus, using the parameterization (24), equation (25)
can be obtained using only the regular solution (21) for
the continuum states. Using equations (15, 20, 29), this
solution can be written as

f reg
λ (ν = i/k; z) =

2k−λ−1e−
πZ
2k∣∣Γ (1 + λ+ iZk )
∣∣

× fλ(k, r) cot δλ + gλ(k, r)
cot δλ − cot 2πλ+ cosec 2πλ exp(−2πZ/k)

· (31)

Similarly to the first equality in (27), here we see an ex-
plicitly real form of f reg

λ for imaginary ν.

2.4 Relation between δλ and µλ

The two relations (25) (with νnλ → ν, µnλ → µλ(ν))
and (29) each determine the same analytic function βλ(ν)
in the ν-plane. Apart from unknown δλ and µλ param-
eters, these relations contain simple analytical functions
and therefore these formulas can be considered as a rela-
tion between quantum defects µλ and scattering phases δλ.
In particular, this relation should allow us:
(i) to express the phases in terms of the quantum defects

for real ν (i.e., where the phases are not defined from
a physical point of view);

(ii) to express the quantum defect in terms of the phases
for imaginary ν (i.e., where the quantum defect has no
physical meaning).
Comparing (25) and (29) yields the following equiva-

lence relations:

cot δλ(ν) sin 2πλ− cos 2πλ+ exp(i2πZν)
1− exp[i2π(Zν − λ)]

↔

cotπµλ(ν) sin 2πλ− cos 2πλ.

Finally, from this equivalence, we obtain the following fun-
damental relations between δλ and µλ:

cot δλ(ν) −→
[
1− ei2π(Zν−λ)

]
cotπµλ(ν)− iei2π(Zν−λ)

for real ν,

cotπµλ(ν) −→ cot δλ(ν) + iei2π(Zν−λ)

1− ei2π(Zν−λ)

for imaginary ν. (32)
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Table 1. Phase shift δ(k2) predicted by δ−µ relations for 3S electron-He+(1s) scattering.

Seaton results Present results
1
2k

2(a.u.) πµ(k2)a Eq. (3) Eq. (38) Eqs. (35, 36)

0.9155 0.7010 0.7057709 0.7057901 0.7057903
aM.J. Seaton, reference [36].

These relations allow one to reconstruct the scattering
phases beyond the imaginary ν domain where they are
defined physically. Such reconstruction is possible if the
quantum defect is known in the real ν domain. As noted
in the Introduction, the scattering phases become complex
if continued into this domain. And vice versa, the function
µλ(ν) becomes complex for imaginary ν. For the discrete
spectrum points ν → νnλ, the first of relations (32) (tak-
ing into account (24)) satisfies the required relation (5).

Although fλ(z) and f−λ−1(z) are not linearly indepen-
dent for integer λ, the relations (32) have no peculiarities
for integer values λ = l and thus they can be used for
integer values of λ also, as follows from continuity argu-
ments. Substituting λ = l into (32) yields the result (4),
which is obtained here without any restrictions on ν val-
ues. For ν values close to the threshold, i.e., for iν → −∞,
the second of the relations (32) yields the near-threshold
Seaton’s formula (2). Note, that this result is also obtained
immediately upon comparing (30) with the threshold limit
of (25).

The δ–µ relation (32) allows us to express all relevant
functions in a unified form for both above- and below-
threshold energies: e.g., the expressions (31, 27) turn into
each other under the substitution ν ↔ i/k if δ and µ are
connected by the relationship (32). Because of the impor-
tance of this key QDT relationship, we provide in the Ap-
pendix A an alternative (less detailed) derivation which
uses base functions other than fλ and f−λ−1.

2.5 Extended Seaton relation between δl and µl

If we interpret the first relation in equation (32) as an
equality for ν = i/k, we have

cot δλ =
[
1− ei2π(iZ/k−λ)

]
cotπµλ − iei2π(iZ/k−λ), (33)

where since ν is imaginary, µλ is complex. We write there-
fore µλ in terms of its real and imaginary parts,

µλ ≡ µr + iµi, (34)

where in what follows we assume λ = l is an integer and
where we have omitted (for simplicity) the label l on the
rhs of (34). Substituting (34) into (33) and taking the
real and imaginary parts of (33) as two real equations, we
obtain after some simple algebra:

cot δ =

[
1− e−2πZ/k

]
cotπµr

1 + (sinhπµi/sinπµr)
2 , (35)

tanhπµi =
(tanhπµi)

2 + (sinπµr/coshπµi)
2

1− e2πZ/k
· (36)

Equations (35, 36) allow one to obtain an improved for-
mula for the relation of δ and µ, where now we consider
that µ has both real and imaginary parts, µr and µi. For
the discrete spectrum, µ ≡ µr and one may assume that an
extrapolation across the ε = 0 threshold will be smooth.
At ε = 0, µi = 0. Thus one may also assume that µi will
be small for small k. We may thus use (36) to obtain for
small µi,

tanhπµi ≈ sinhπµi ≈
(sinπµr)

2

1− e2πZ/k
≈ −(sinπµr)

2e−2πZ/k.

(37)

Substituting this equation in (35) gives an extended ver-
sion of Seaton’s formula (3) which involves only the real
part of the quantum defect:

cot δ ≈
[
1− e−2πZ/k − (sinπµr)

2e−4πZ/k
]

cotπµr. (38)

We see that equation (38) differs from equation (3) of
Seaton by a factor that includes the square of the exponent
exp (−2πZ/k). Thus equation (38) involves a second or-
der correction to Seaton’s threshold formula (2), whereas
equation (3) involves a first order correction to (2). Of
course, away from threshold, where µi may not be small,
the exact equations (35, 36) must be used to obtain δ
as a function of µ. Near threshold, we do not expect the
extended δ–µ relation to give an important improvement
to predictions of phase shifts. For example, we compare
in Table 1 our results with predictions of Seaton [36] and
observe that for this value of kinetic energy, k2/2, our pre-
dictions are very close to that predicted by equation (3).

3 QDT Green’s function and eigenfunctions

To illustrate the significance of the δ−µ relation (32) for
theoretical analyses, we present here the QDT-analysis
of the Green’s function for the “generalized” Whittaker
equation (7). We define the Green’s function of the unper-
turbed Whittaker equation (having the asymptotic form
of an outgoing spherical wave for ν = i/k) as is customary
in physical applications (see, e.g., [37]):

L̂0[G0
λ(ν; z, z′)] = −νδ(z − z′). (39)

Using the known Wronskian, w[W,M+], of the func-
tions (11) and employing the notation in (12), the solution
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of (39) can be written in a standard way as:

G0
λ(ν; z, z′) = ν

M+(z<)W (z>)
w[W,M+]

= νΓ (1 + λ− Zν)M+(z<)WZν,λ+ 1
2
(z>).

(40)

Here z> = (2/ν) max(r, r′), and z< = (2/ν) min(r, r′). It
is a well-known fact that the Green’s function contains all
the necessary information on the Sturm-Liouville problem
for the operator L̂0 and has an expansion in terms of the
eigenfunctions of this problem (i.e., the spectral expan-
sion). Namely, its poles determine the discrete spectrum
of L̂0 (10) with an accumulation point at infinity. Above
the threshold, equation (40) reduces with the help of (15)
to the following form:

G0
λ(i/k; r, r′) =

2i fλ(k, r<)
k

[
fλ(k, r>)− igλ(k, r>)

]
(41)

∼ 2 sin∆λ(r<)
k

ei∆λ(r>) at r, r′ →∞.
(42)

Obviously, the QDT Green’s function Gλ(ν; z, z′) for the
operator L̂u in the r, r′ > rc domain (where u(z) = 0)
also satisfies equation (39), which is valid for the “unper-
turbed” Green’s function G0

λ(ν; z, z′) at any r, r′ ≥ 0. A
general solution of (39) on the interval rc ≤ r, r′ <∞ can
be expressed in terms of the Whittaker functions (11, 12)
as follows:

Gλ(ν; z, z′) = νΓ (1 + λ− Zν)M+(z<)WZν,λ+ 1
2
(z>)

+ AνWZν,λ+ 1
2
(z)WZν,λ+ 1

2
(z′)

= G0
λ(ν; z, z) + AνWZν,λ+ 1

2
(z)WZν,λ+ 1

2
(z′).
(43)

The second term on the right-hand side of this equation is
a particular solution of the homogeneous equation (39);
for real z, z′ this solution is regular over the interval
considered. Since the Green’s function must be regular
at r, r′ → ∞, it must not contain the second particu-
lar solution, which is proportional to a product of two
M+ functions. The r-independent factor A depends on ν
and λ and is determined by the short-range core potential
u(z). In principle, it could be calculated by matching the
intra-core value of Gλ with its extra-core expression (43)
at r = rc. In particular, in the unperturbed case, (43) is
valid for all r, and the boundedness condition at r → 0
leads to A = 0. Since the Green’s function in the r, r′ < rc
domain is unknown for u(z) 6= 0, we calculate A for this
case using the asymptotic form of (43) for imaginary ν.
Note that the asymptotic expression (42) remains valid in
this case (taking into account the phase shift δλ, cf. (28)):

Gλ(i/k; r, r′) ∼
2 sin

[
∆λ(r<) + δλ

]
k

ei
[
∆λ(r>)+δλ

]
at r, r′ →∞. (44)

So for imaginary ν, we can express A in terms of the scat-
tering phase. Taking into account equation (12) and sub-
stituting the asymptotic forms (16) into (43), and com-
paring the result with (44), we find

A = −
[
e2iδλ − 1

]
exp[2iσλ + iπ(Zν − λ)]. (45)

If the phase δλ is known, equations (43, 45) determine
the Green’s function for the continuous spectrum (i.e.,
for imaginary ν). Using (15) it can be written in a more
compact form as

Gλ(i/k; r, r′) =
2ieiδλ

k

[
fλ(k, r<) cos δλ + gλ(k, r<) sin δλ

]
×
[
fλ(k, r>)− igλ(k, r>)

]
(46)

As is evident from (17), equation (46) leads immediately
to the asymptotic expression (44). As in the unperturbed
case, the imaginary part of the Green’s function leads to
the following expression for the continuum eigenfunction:

fkλ(r) =

√
2
πk

(
fλ(k, r) cos δλ + gλ(k, r) sin δλ

)
.

For analytical continuation of expression (45) for A onto
the real ν axis we use the previously obtained δ–µ relation.
Substituting (32) into (45) yields

A =
Γ (1 + λ− Zν)
Γ (1 + λ+ Zν)

sinπµλ
sinπ(µλ + Zν − λ)

· (47)

So for the discrete spectrum domain the Green’s function
has the form given by (43) and (47).

A simple analysis shows that all of the above forms for
the QDT Green’s function coincide with the forms (40, 41)
for the “unperturbed” Green’s functions at µλ → 0. The
QDT Green’s function has poles determined by the condi-
tion (24), so that these poles correspond to the preassigned
(e.g., experimental) energy levels. As in the unperturbed
case, the residues at these poles,

− 1
ν3

Res
ν=νnλ

Gλ(ν; z, z′) = fnλ(r)fnλ(r′),

are equal to the product of the bound state eigenfunctions
fnλ(r). Calculating the residue leads to

fnλ(r) = C
−1/2
nλ (−1)nWZνnλ,λ+ 1

2

(
2r
νnλ

)
,

where the normalization constant, Cnλ, given by

Cnλ = Zν2
nλ

(
1 +

1
Z

∂µλ(ν)
∂ν

∣∣∣∣
ν=νnλ

)
× Γ (Zνnλ − λ)Γ (1 + λ+ Zνnλ),

is typical for the QDT wavefunctions [6]. By thus calculat-
ing the Green’s function residues, this constant is obtained
straightforwardly.
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G
(s)
λ (ν0

nλ; zn, z
′
n) = ν0

nλn!(znz
′
n)λ+1e−(zn+z′n)/2L2λ+1

n (z>,n)

×
�
− iπ

Γ (n+ 2λ+ 2)
L2λ+1
n (z<,n) + ez<,ne2πiλU(n+ 2λ + 2, 2λ+ 2;−z<,n)

o
,

G0
λ(ν; z, z′) = −πν Γ (1 + λ+ Zν)

Γ (−λ+ Zν)
M+(z)M+(z′) cot π(Zν − λ)

− πνM
+(z<)

sin 2πλ

�
cos 2πλ

Γ (1 + λ+ Zν)

Γ (−λ+ Zν)
MZν,λ+ 1

2
(z>) +MZν,−λ− 1

2
(z>)

�

= −πA(ν, λ)fλ(z)fλ(z′) cotπ(Zν − λ) + πfλ(z<)Yβ(ν, λ; z>), (51)

Evidently, the QDT Green’s function must not have
the poles corresponding to the “unperturbed” eigenval-
ues (10). This fact is demonstrated most clearly if we re-
write (43, 47) to obtain,

Gλ(ν; z, z′) = − πν cotπ(µλ + Zν − λ)
Γ (Zν − λ)Γ (1 + λ+ Zν)

×WZν,λ+ 1
2
(z)WZν,λ+ 1

2
(z′) +G

(s)
λ (ν; z, z′), (48)

where

G
(s)
λ (ν; z, z′) = νeiπZνWZν,λ+ 1

2
(z>)W−Zν,λ+ 1

2
(−z<)

− iπν
WZν,λ+ 1

2
(z)WZν,λ+ 1

2
(z′)

Γ (Zν − λ)Γ (1 + λ+ Zν)
· (49)

All the poles of Gλ at positive ν are determined by the
cotangent in the first, “resonant” term in (48), which is
symmetric in z, z′. Thus the “unperturbed” poles do not
occur for µλ 6= 0. The term G

(s)
λ (ν) in (48) does not con-

tain any poles in the ν-plane with the cut along the nega-
tive semiaxis, so it can be considered as the explicit form
for one of the “smooth” Green’s functions given in [15].
Note that this latter reference contains a discussion of dif-
ferent forms of “smooth” Green’s functions, convenient in
multichannel applications, in terms of different forms of
expansions of both the bound and the continuum state
wavefunctions. On the contrary, in equation (49) we have
a closed form without any expansions.

It is important that the cotangent in the “resonance”
term of (48) contains all of the dependence of Gλ on µλ.
Thus, for µλ = 0, (48) gives an expression for the “unper-
turbed” Green’s function in terms of its “resonant” and
“smooth” parts. Note that the latter can also be written
in another form having no complex quantities for real ν:

G
(s)
λ (ν; z, z′) = νΓ (1 + λ− Zν)

×
[
M+(z<) + cosπ(Zν − λ)W+(z<)

]
WZν,λ+ 1

2
(z>).
(50)

Although G
(s)
λ (ν; z, z′) is a regular function of ν, at ν =

ν0
nλ its representation (49) has ambiguous values of the

type 0 · ∞. The numerical values of G(s)
λ at these points

can be obtained by straightforward calculation of the limit
as ν → ν0

nλ or, alternatively, G(s)
λ (ν0

nλ) can be expressed
in terms of the functions W±, which are involved in (49)
and are simplified at ν = ν0

nλ and z = zn = 2r/ν0
nλ as

follows:

see equation above

where Lαn is the generalized Laguerre polynomial and U
is the confluent hypergeometric function of the second
kind [31].

A “smooth-pole” decomposition of the “non-
perturbed” Coulomb Green’s function G0

λ, somewhat
similar to (48), was stated in [19]. We correct a misprint
occurring in that work and re-write the result in terms of
the functions used in the present paper:

see equation (51) above

where Yβ(z) is defined in equation (A.2) of Appendix A.
Since it is defined to within an arbitrary regular function
of ν, this is an alternative definition to that stated above
(i.e., Eq. (48) with µλ = 0). The difference between these
definitions is that the result in equation (48) is an ana-
lytical function of ν, while the result in equation (51) is
not. More specifically, the result in (51) is analytic only
for noninteger 2λ; otherwise, another “smooth-pole” de-
composition should be used.

It should be noted that the QDT Green’s function for
the discrete spectrum domain can be obtained in a form
similar to that in equation (40) if we take f reg

λ as the
regular solution and W as the irregular one:

Gλ(ν; z, z′) = ν
f reg
λ (z<)WZν,λ+ 1

2
(z>)

w[WZν,λ+ 1
2
, f reg
λ ]

· (52)

Using (27) and calculating the Wronskian, w, easily yields
the same result as in (43, 47) for real ν. In this way the
QDT Green’s function was constructed in [15]. But unlike
equation (40), which contains well-known functions and
has the same form for all ν, the δ–µ relation (32) is needed
for the direct continuation of Gλ(ν) in equation (52) for
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G
(s)
λ (ν; z, z′) = ν

√
zz′

1Z
0

dt
t−Zν−

1
2

1− t exp

�
−1

2
(z + z′)

1 + t

1− t

�

×
�
I2λ+1

�√
zz′t

1− t

�
− 2

π
sin π(Zν + λ) cos π(Zν − λ)K2λ+1

�√
zz′t

1− t

��
(53)

real ν to the continuum domain. The same arguments are
valid for the continuation of equations (43, 45, 46) to the
real ν domain. The situations considered here are simple
examples of the use of relations (32): they allow one to
avoid routine calculations. Indeed, otherwise one needs to
obtain separate expressions for the solutions with positive
and negative energies and to trace accurately the analytic
continuation between them.

An important role in the Green function approach is
played by integral representations. One such representa-
tion was given for the “unperturbed” Coulomb Green’s
function (40) in [37]. The result contains the integral of
the Bessel function for an imaginary argument, I2λ+1(x).
Using the known integral representation for the product of
two Whittaker functionsW+ [38], we present here an anal-
ogous integral representation for the “smooth” Green’s
function:

see equation (53) above,

where K2λ+1(x) is the McDonald function. Using the
properties of Bessel and McDonald functions, it can be
shown that the “smooth” Green’s function (53) has no
peculiarities at the Coulomb pole points ν = ν0

nλ =
(n+ λ+ 1)/Z.

4 Summary and conclusions

In this paper we have presented a theoretical analysis
of the relationship between the quantum defect and the
phase shift for a single electron described by an equation
having the general form of the Whittaker equation includ-
ing a short-range potential. The relationship obtained re-
quires that µ becomes complex for energies above thresh-
old, which is complementary to the known fact that the
phase shift becomes complex below threshold. For the case
of integer λ = l, this general relationship (32) may be re-
garded as extending Seaton’s relation between δl and µl.
In our view, the most important application for the gen-
eral relation (32) for arbitrary λ is in analytical work; in
particular, to construct the single-channel Green’s func-
tion in a completely general form (cf. Eqs. (43, 45, 47))
in terms of the phase shift for energies above threshold
and the quantum defect for energies below threshold. We
have presented compact analytic representations for the
Green’s function in terms of its resonant and smooth parts
(see Eqs. (48–51)), and have also given an integral rep-
resentation (53) for the smooth part. All of our general
results have been related to earlier, more specialized re-
sults (where they exist). We expect the general forms of

the Green’s functions we present here, which are obtained
using the relationships presented in (32), to have prac-
tical applications in theoretical work. In particular we
expect these Green’s functions will aid computations of
high-order perturbation treatments of multiphoton pro-
cesses for electrons in a screened Coulomb or Coulomb
plus dipole potential. Finally, while we have dealt in this
work only with the single-channel QDT, the generaliza-
tion of the QDT-approach to multichannel (e.g., collisional
or molecular) problems is well-known and details can be
found in [6,39–41]. Results presented here are also use-
ful for multichannel applications, particularly for the con-
struction of multichannel QDT-Green’s functions. How-
ever, we have deferred this extension to a subsequent work.

NLM gratefully acknowledges the hospitality of the University
of Nebraska-Lincoln where a part of this work was carried out
during his visit to the Department of Physics and Astronomy.
AFS thanks Paul Koosis for useful comments. This research
was supported in part by the Russian Foundation for Basic
Research (Grants 98-02-16111 and 97-02-18035), by the Grant
Program “Universities of Russia”, and by the US National Sci-
ence Foundation through Grant No. PHY-9722110.

Appendix A: Alternative derivation of the δ−µ
relation in terms of Y and Y basis functions

Besides the functions mentioned in Section 2.1, another
basis pair is widely used in QDT. This pair is denoted
(to within a constant factor) as f, η in [6], as y1,3 in [7],
and as yα,β in [24]. These base functions are analytic in
ν near threshold for 2λ 6= 2l. In the present paper they
are denoted as Yα,β(ν, λ; z), which we express in terms of
the (M+,W+), W±, (fλ, f−λ−1), and (fλ, gλ) base pairs
as follows:

Yα = fλ = νλ+1M+ ↔ 2fλk
−(λ+1)e−

πZ
2k∣∣Γ (1 + λ+ iZk
)∣∣ (A.1)

Yβ = − csc 2πλ [fλ cos 2πλ+A(ν, λ)f−λ−1] (A.2)

= νλ+1
[
M+ cotπ(Zν − λ) +W+ cscπ(Zν − λ)

]
= νλ+1eiπ(Zν−λ)

[
eiπλW− cotπ(Zν − λ)− iW+

]
(A.3)

↔ 2k−(λ+1)e−
πZ
2k∣∣Γ (1 + λ+ iZk
)∣∣ gλ − ifλe−

2πZ
k −i2πλ

1− e−
2πZ
k −i2πλ

· (A.4)

Using this base pair, we provide here another way to de-
duce the δ–µ relation (32). Assuming for the moment
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Yγ(z) = Yβ(z) +
1

2π

�
ψ(1 + l + Zν) + ψ(Zν − l)− 2 ln ν

�
Yα(z)

=
�
ln 2r + cot(Zν − l) +

1

2π
ψ(1 + l + Zν) +

1

2π
ψ(Zν − l)

�
Yα(z)

+
(zν)l+1e−z/2

πΓ (1 + l − Zν)

∞X
k=0

Γ (1 + l− Zν + k)

(2l + k + 1)!

�
ψ(1 + l− Zν + k) + ψ(2l + 2 + k) + ψ(1 + k)

�zk
k!

− ν (ν/z)le−z/2

πΓ (1 + l− Zν)

2lX
k=0

Γ (−l− Zν + k)(2l − k)!
(−1)kzk

k!

that µ is some parameter, we express the regular solution
f reg
λ (21) in terms of Yα and Yβ :

f reg
λ = N(cotπµYα + Yβ). (A.5)

Thus, instead of the coefficient β(ν) in (21), we parame-
terize the regular solution f reg

λ by another auxiliary func-
tion, cotπµ(ν). For integer 2λ = 2l, the µ parameter
in (A.5) is the quantum defect [6]. For arbitrary λ, sub-
stituting (A.1, A.2) into (A.5) and comparing the result
with (21) we find that N = [cotπµ − cot 2πλ]−1. It is
evident from (27) that the exponentially increasing part
of (A.5) vanishes only for that ν which satisfies the bound
state condition (24). This fact shows that µ in (A.5) is
indeed the quantum defect also for non-integer λ. On the
other hand, in the above-threshold domain, the regular so-
lution (A.5) should have the asymptotic form (28). Substi-
tuting (A.1, A.4) into (A.5) we may express f reg

λ in terms
of the (fλ, gλ)-pair. Using the asymptotic relations (17) for
fλ, gλ and comparing the result with (28), we obtain our
basic δ–µ relations (32) once again.

As noted above, Yβ is not an analytic function of ν for
integer values of 2λ. In this case an analytic solution, Yγ ,
can be constructed using the procedure proposed in [6]:

Yγ(z) = Yβ(z)− GYα, G(ν, l) =
1

2π
dA(ν, λ)

dλ

∣∣∣∣
λ=l

.

Note that Fano and coworkers refer to G = Re G as one of
the six QDT parameters [15]. Since, so far as we know, the
explicit form for Yγ(z) has not been presented elsewhere,
we provide it here:

see equation above

where ψ(z) is the logarithmic derivative of Γ (z). It is easy
to see that Yγ has only a finite number of poles at ν =
−l, . . . , l. It is thus analytic near threshold, i.e., for large
ν. These considerations apply as well for half-integer λ.

Appendix B: Application to special cases
of the Whittaker equation

In this appendix we indicate the physical meaning of the
parameters Z, λ, ν, µλ, for some concrete problems for
which particular, appropriate Green’s functions and δ−µ
relations can be obtained as limiting cases of the general
results presented above.

Nonrelativistic electron in a hydrogen-like atom or ion

The radial Schrödinger equation for an electron in a
Coulomb plus short range potential reduces to equa-
tion (7), where

– λ = l is the (integer) orbital angular momentum quan-
tum number;

– Z is the atomic core (or ion) charge;
– ν is related to the energy ε (in atomic units) as ν =

1/
√
−2ε;

– energy levels: εnl = − Z2

2(n+ l + 1− µnl)2
.

The QDT Green’s function for the non-relativistic
Coulomb problem was constructed for the first time
in [11], where it had a form similar to that given in
(43–47), but with integer λ = l.

Relativistic electron in a hydrogen-like atom or ion

In the domain r > rc the squared radial Dirac equation
for an electron in a Coulomb plus short range potential
reduces to equation (7) with u(z) = 0, where

– ν is related to the energy E = ε̄mec
2 by ν =

α
/√

1− ε̄ 2 . Here me is the electron mass, c is the
speed of light, and α is the fine structure constant;

– Z must be replaced by ε̄Z, where Z is the core charge
of the atom or ion;

– λ is the relativistic parameter connected with the total
(j) and orbital (l) angular momentum of the electron:

λ =
√

(j + 1
2 )2 − (αZ)2 + l − j − 1

2 ;
– energy levels:

Enλ = mec
2

[
1 +

(
αZ

n+ λ+ 1− µnλ

)2
]− 1

2

.

Here n coincides with the radial quantum number nr

for l = j − 1/2 and nr = n+ 1 at l = j + 1/2.

The full three-dimensional QDT Green’s function for
the relativistic Coulomb problem has been presented
in [28].

Rydberg electron in a polar molecule

As was shown in [42], the Rydberg states of polar
molecules can be described by a Schrödinger equation for
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an electron in a point dipole plus Coulomb potential. The
angular variables can be separated for this problem, and
the radial Schrödinger equation reduces to equation (7),
where
– λ = λ(l,m, d) depends on the projection m of the elec-

tron orbital momentum l onto the molecular axis as
well as on the permanent molecular dipole moment d.
Being a non-integer analogue of the atomic electron
orbital quantum number, λ values are enumerated by
integer l so that λ→ l as d→ 0;

– Z is the molecular core (or ion) charge;
– ν is related to the energy ε as ν = 1/

√
−2ε;

– energy levels: εnλ = − Z2

2[n+ λ(l,m, d) + 1− µnλ]2
·

The QDT for the radial Schrödinger equation with
a point dipole plus Coulomb potential was discussed
in [16,33], and has been used in atomic calculations (see,
e.g., [43]). The three-dimensional QDT-Green’s function
for a polar Rydberg molecule was constructed in [29].

Appendix C: On the relation of the present
results to the generalized form of QDT

In this appendix we discuss in more detail (than in the In-
troduction) the relation of our results to the general form
of QDT developed by Fano and coworkers. In particular,
we consider the main issue discussed in the Appendix of
reference [15] concerning the asymptotic form of the regu-
lar Coulomb solution for negative energies. Note that some
functions mentioned above in Section 2.1 are referred to
in references [15–17,33] using another notation, e.g., they
employ f± and f0, which are defined by

f± =
(
±ν

2

)±Zν
W±Zν,λ+ 1

2
(±z)→ r±Zνe∓r/ν

at r →∞, (C.1)

f0 =
Γ (2λ+ 2)

2λ+1
fλ =

(ν
2

)λ+1

Γ (2λ+ 2)M+(z). (C.2)

The regular function at the origin, f0, in the above-cited
works is given separate representations above and below
the threshold:

f0 =
i√

2πkB
(f−e−iη − f+eiη), ε > 0, (C.3)

=
1√
πkA

(D−1 sinβf− −D cosβf+), ε < 0. (C.4)

The parameters A, B, D, η and β involved in the above
equations are the (real) QDT parameters introduced in
references [15,16]. (The last, sixth QDT parameter, G =
Re G, was noted in Appendix A.) Using the standard def-
inition (12) for M+(z) in terms of W±(z) functions, the
regular Coulomb solution f0 for ε < 0 may be presented
in the same form as (C.4), with the same parameters η
and β, i.e.,

η =
Z

k
ln 2k − πλ

2
− σλ and β = π(Zν − λ), (C.5)

but with complex parameters A and D. The expressions
one finds in this way for A and D are:

D2
c = eiβ

(
2
ν

)2Zν
π secβ

Γ (Zν − λ)Γ (1 + λ+ Zν)
, (C.6)

Ac = e−iβ cosβ
22λ+2

Γ 2(2λ+ 2)
A(ν, λ),

where we have distinguished the complex parameters by
a subscript c. The (real) expressions for D and A used by
Fano and coworkers in equation (C.4) follow from (C.6)
upon substituting

exp(iβ)→ cosβ, exp(−iβ)→ secβ. (C.7)

i.e., D2 = ReDc
2 and A−1 = Re (A−1

c ). The origin of this
difference (and this is the key (mathematical) difference
between the unified development of QDT and previous
studies in QDT) is that in the above cited works the au-
thors used another asymptotic expression for the conflu-
ent hypergeometric function F (a, c, z) (and therefore for
Mk,m(z) = exp (−z/2)zm+1/2 F (m− k + 1/2, 2m+ 1, z))
from that given in standard textbooks, which the authors
of reference [15] denote the “apparent large-z form” (see
the Appendix in Ref. [15]). In fact, in reference [15] the
substitution exp(iβ)→ cosβ is made in the complex factor
before the term with decreasing exponent in the standard
asymptotic form of F (1+λ−ν, 2λ+1, z) for z = 2r/ν > 0.

In our analysis we have not used the alternate asymp-
totic form of the regular solution employed in [15] since in
our derivation in Section 2.2 we do not need in fact a de-
tailed form of the factor before the decreasing term in the
asymptotic form of f reg

λ (ν; z →∞) for real ν. To establish
the parameter β in equation (21) for bound state energies
we employ only the fact that the term with the increasing
exponent must vanish for ν = νn in order to derive equa-
tion (23). The standard asymptotic form of F (a, c, z) (or
M+) follows from the well-known relation (12) betweenM
and W functions and asymptotic expansions (16) for W
functions, and does not seem to require another deriva-
tion. The complexity of the manifestly real regular so-
lution for ε < 0 at large r (which is postulated in the
Appendix of [15] to be an inaccuracy of the standard
asymptotic form for F (a, c, z)) is only apparent, since
for negative energies the term with decreasing expo-
nent should be dropped in the asymptotic expansion of
F (a, c, z) in comparison with the term with increasing ex-
ponent. For negative energy not equal to a bound state en-
ergy, the exponentially increasing terms in the asymptotic
expansion of F (a, c, z) are the only ones which matter,
and the fact that the coefficient of the exponentially de-
creasing term is complex is of no consequence. For bound
state energies, of course, the coefficient of the exponen-
tially increasing term vanishes and the coefficient of the
decreasing exponential (which must now be kept) is real.
Owing to the singularity of a Coulomb-like potential, there
may not exist for the regular solution with ε < 0 an
accurate representation at large r in the form of a sum
of two real terms with increasing and decreasing expo-
nents exp(±r/ν) (with the exception, obviously, of the
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case ε = εn when there remains only one real term with
decreasing exponent). In reference [15], the authors pre-
sented more physical rather than mathematical arguments
to justify their corrected large-z asymptotics. Although
they write that “It (i.e., their prescribed asymptotic form)
could presumably be justified in greater detail...” by con-
sidering the representation of F (a, c, z) for ε < 0 as a con-
tour integral along a double loop in the complex plane,
they do not justify it in this way.

We regard the large-r representation suggested in [15]
for the regular solution as a physically-based prescription
for introducing the Jost formalism into the QDT analysis
for singular potentials. The results of such analysis demon-
strate the utility of this suggested approach for applica-
tions. Taking into account the discussion in the Introduc-
tion and the above comments, we conclude that there is no
contradiction between the generalized form of QDT and
the derivations in this paper since nonoverlapping matters
are considered. We agree with the authors of reference [16]
(cf. p. 2443) that the analysis of δλ(ν) “... is regarded as a
problem of core dynamics to be pursued separately.” Nev-
ertheless, this dynamics introduces energy dependences of
both functions, µ(ν) and δ(ν), which may not be the same.
Moreover, a general relation between these two functions
may exist, which is independent of the details of the short-
range interactions, as demonstrated by (32).
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